

A04614B

40V Dual P + N-Channel MOSFET

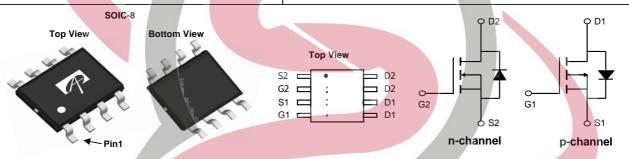
General Description

The AO4614B uses advanced trench technology MOSFETs to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications.

Product Summary

N-Channel P-Channel

 $V_{DS}(V) = 40V,$ -40V


 $I_D = 6A (V_{GS}=10V)$ -5A (VGS=-10V)

 $R_{\text{DS(ON)}}$

 $< 30 m \Omega$ (V_{GS}=10V) $< 45 m \Omega$ (VGS= -10V) $< 38 m \Omega$ (VGS= 4.5V) $< 63 m \Omega$ (VGS= -4.5V)

100% UIS Tested 100% UIS Tested 100% Rg Tested 100% Rg Tested

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter	Symbol	Max n-channel	Max p-channel	Units	
Drain-Source Voltage	V_{DS}	40	-40	V	
Gate-Source Voltage	V_{GS}	±20	±20	V	
Continuous Drain T _A =25℃		6	-5		
Current ^A T _A =70℃	I _D	5	-4	_	
Pulsed Drain Current B	I _{DM}	30	-30	A	
Avalanche Current B	I _{AR}	14	-20		
Repetitive avalanche energy L=0.1	mH ^B E _{AR}	9.8	20	mJ	
Power Dissipation T _A =25℃	P_{D}	2	2	W	
T _A =70℃	LD	1.28	1.28		
Junction and Storage Temperature	Range T _J , T _{STG}	-55 to 150	-55 to 150	UC.	

Thermal Characteristics: n-channel and p-channel							
Parameter		Symbol	Device	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$ R_{\theta JA}$	n-ch	48	62.5	%\W	
Maximum Junction-to-Ambient A	Steady-State	IX _θ JA	n-ch	74	110	℃/W	
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	n-ch	35	50	C/W	
Maximum Junction-to-Ambient A	t ≤ 10s	$ R_{\theta JA}$	p-ch	48	62.5	%\W	
Maximum Junction-to-Ambient A	Steady-State	IN _θ JA	p-ch	74	110	℃/W	
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	p-ch	35	50	C/W	

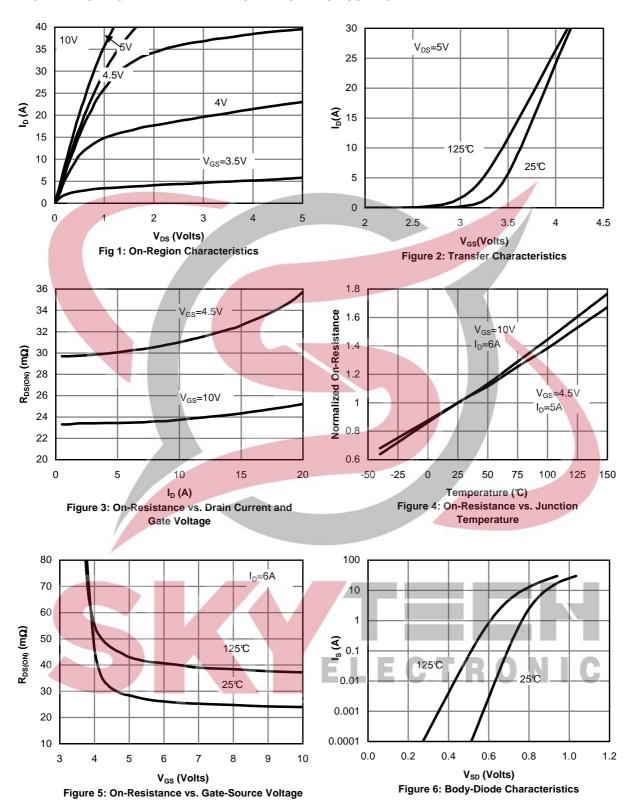
N Channel Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	40			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =40V, V _{GS} =0V			1			
		T _J =55℃			5	μΑ		
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			±100	nΑ		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	1.7	2.5	3	V		
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V	30			Α		
		V_{GS} =10V, I_D =6A		24	30			
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125℃		36	45	$m\Omega$		
		V_{GS} =4.5V, I_D =5A		30	38			
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =6A		19		S		
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.76	1	V		
Is	Maximum Body-Diode Continuous Current				2	Α		
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance		410	516	650	pF		
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =20V, f=1MHz		82		pF		
C_{rss}	Reverse Transfer Capacitance			43		pF		
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		4.6		Ω		
SWITCHI	NG PARAMETERS							
Q _g (10V)	Total Gate Charge			8.9	10.8	nC		
Q _g (4.5V)	Total Gate Charge	V_{GS} =10V, V_{DS} =20V,		4.3	5.6	nC		
Q_{gs}	Gate Source Charge	I _D =6A		2.4		nC		
Q_{gd}	Gate Drain Charge			1.4		nC		
t _{D(on)}	Turn-On DelayTime			6.4		ns		
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =20V, R_L =3.3 Ω ,		3.6		ns		
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		16.2		ns		
t _f	Turn-Off Fall Time			6.6		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =6A, dl/dt=100A/μs		18	24	ns		
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =6A, dI/dt=100A/μs		10		nC		

A: The value of R $_{\text{BJA}}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{\text{A}}$ =25 $^{\circ}$ C. The value in any given application depends on the user's specific board design. The current rating is based on the t $_{\circ}$ 10s thermal resistance rating.

Rev2: Nov. 2010

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.


B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

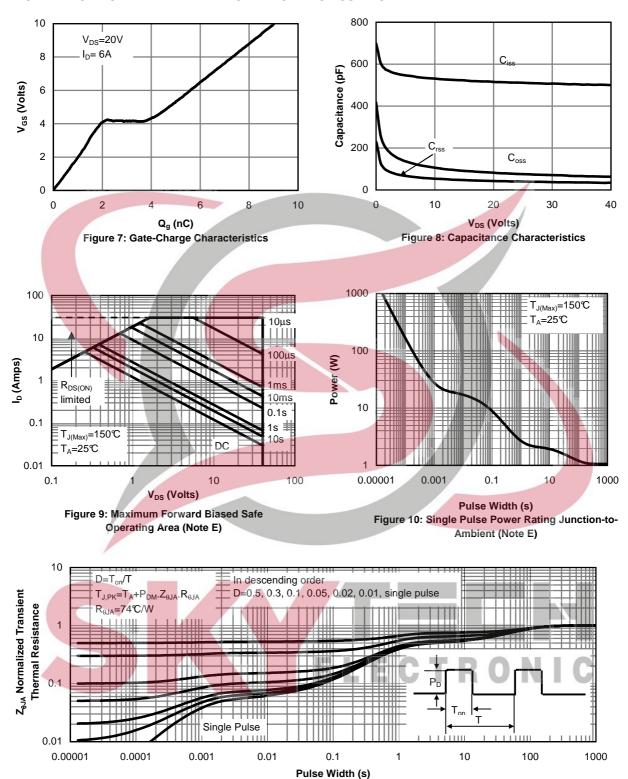


Figure 11: Normalized Maximum Transient Thermal Impedance

P-Channel Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units		
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-40			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -40V, V _{GS} =0V			-1			
		T _J =55℃			-5	μΑ		
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			±100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-1.7	-2	-3	V		
$I_{D(ON)}$	On state drain current	V_{GS} = -10V, V_{DS} = -5V	-30			Α		
		V _{GS} = -10V, I _D = -5A		36	45			
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125℃		52	65	mΩ		
		$V_{GS} = -4.5V, I_D = -4A$		50	63			
g _{FS}	Forward Transconductance	V_{DS} = -5V, I_D = -5A		13		S		
V_{SD}	Diode Forward Voltage	I_S = -1A, V_{GS} =0V		-0.76	-1	V		
Is	Maximum Body-Diode Continuous Current				-2	Α		
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance		750	940	1175	pF		
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} = -20V, f=1MHz		97		pF		
C_{rss}	Reverse Transfer Capacitance			72		pF		
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		14		Ω		
SWITCHII	NG PARAMETERS							
Q _g (-10V)	Total Gate Charge			17	22	nC		
Q _g (-4.5V)	Total Gate Charge	V _{GS} = -10V, V _{DS} = -20V,		7.9	10	nC		
Q_{gs}	Gate Source Charge	$I_D = -5A$		3.4		nC		
Q_{gd}	Gate Drain Charge			3.2		nC		
t _{D(on)}	Turn-On DelayTime			6.2		ns		
t _r	Turn-On Rise Time	V_{GS} = -10V, V_{DS} = -20V, R_L =4 Ω ,		8.4		ns		
$t_{D(off)}$	Turn-Off DelayTime	$R_{GEN}=3\Omega$		44.8		ns		
t _f	Turn-Off Fall Time			41.2		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F = -5A, dI/dt=100A/μs		21	27	ns		
Q _{rr}	Body Diode Reverse Recovery Charge	I _F = -5A, dI/dt=100A/μs		14		nC		

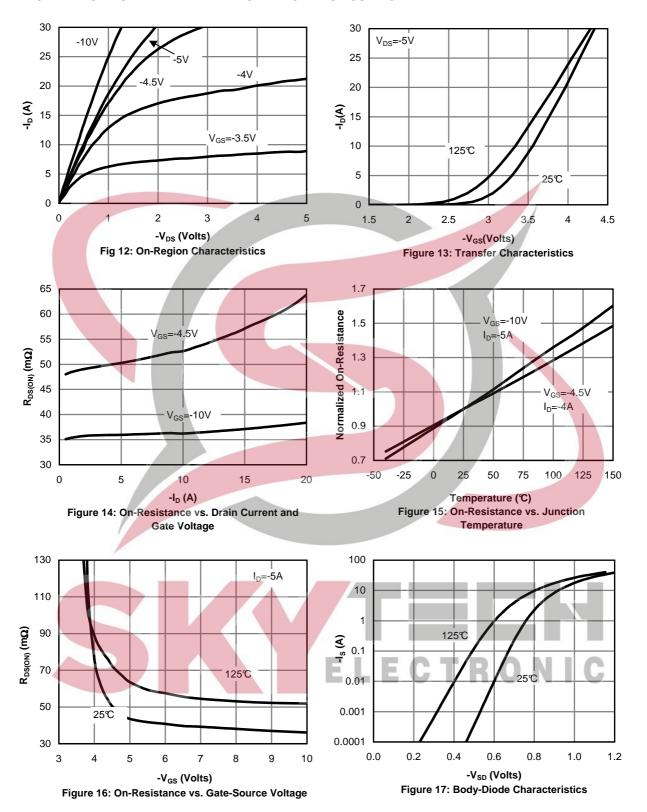
A: The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with

Rev1 : Jan 2010

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

T_A=25°C. The value in any given application depends on the user's specific board design. The current rating is based on the

 $t \leq 10s$ thermal resistance rating.


B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using <300 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with $T_A=25$ °C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

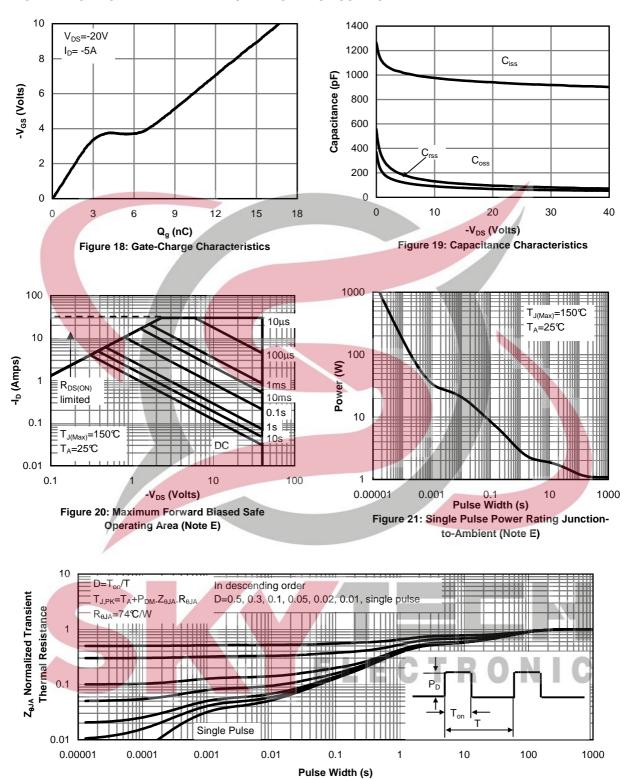


Figure 22: Normalized Maximum Transient Thermal Impedance